Algebraic Differential Fault Attacks on LED using a Single Fault Injection

نویسندگان

  • Xin-jie Zhao
  • Shize Guo
  • Fan Zhang
  • Tao Wang
  • Zhijie Jerry Shi
  • Keke Ji
چکیده

This paper proposes a new fault attack technique on the LED block cipher using a single fault injection by combining algebraic side-channel attack (ASCA) and differential fault attack (DFA). We name it as algebraic differential fault attack (ADFA). Firstly, a boolean equation set is constructed for LED using algebraic techniques. Then, the fault differences of the S-Box inputs in the last round of LED are deduced by DFA and represented using algebraic equations by the multiple deductions-based ASCA (MDASCA) technique proposed in COSADE 2012. Finally, the key is recovered by solving the equation set with the CryptoMiniSat solver. We show that, as to ADFA on LED under the single nibble-based fault model, the 64-bit key can be recovered within one minute on a common PC with a success rate of 79%, which is more efficient than previous work. We modify the CryptoMiniSat solver to count and output multiple solutions for the key, and conduct ADFA to calculate the reduced key search space for DFA. The key search space of LED is reduced to 26 ∼ 217, which is different from previous work. We also successfully extend ADFA on LED to other fault models using a single fault injection, such as byte based fault model and nibble based diagonal fault model, where traditional DFAs are difficult to work. The results show that ADFA is an efficient and generic fault analysis technique which significantly improves DFA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relaxed Differential Fault Analysis of SHA-3

In this paper, we propose a new method of differential fault analysis of SHA-3 which is based on the differential relations of the algorithm. Employing those differential relations in the fault analysis of SHA-3 gives new features to the proposed attacks, e.g., the high probability of fault detection and the possibility of re-checking initial faults and the possibility to recover internal state...

متن کامل

Improved Algebraic Fault Analysis: A Case Study on Piccolo and Applications to Other Lightweight Block Ciphers

This paper proposes some techniques to improve algebraic fault analysis (AFA). Firstly, we show that building the decryption equation set of a cipher can accelerate the solving procedure. Secondly, we propose a method to represent the injected faults with algebraic equations when the accurate fault location is unknown. We take Piccolo as an example to illustrate our AFA and compare it with prev...

متن کامل

An Algebraic Fault Attack on the LED Block Cipher

In this paper we propose an attack on block ciphers where we combine techniques derived from algebraic and fault based cryptanalysis. The recently introduced block cipher LED serves us as a target for our attack. We show how to construct an algebraic representation of the encryption map and how to cast the side channel information gained from a fault injection into polynomial form. The resultin...

متن کامل

Mutant Differential Fault Analysis of Trivium MDFA

In this paper we present improvements to the differential fault analysis (DFA) of the stream cipher Trivium proposed in the work of M. Hojśık and B. Rudolf. In particular, we optimize the algebraic representation of obtained DFA information applying the concept of Mutants, which represent low degree equations derived after processing of DFA information. As a result, we are able to minimize the ...

متن کامل

Fault Analysis Study of IDEA

We present a study of several fault attacks against the block cipher IDEA. Such a study is particularly interesting because of the target cipher’s specific property to employ operations on three different algebraic groups while not using substitution tables. We observe that the attacks perform very different in terms of efficiency. Although requiring a restrictive fault model, the first attack ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012